基于的姿态解算姿态类型为四元数角速度和线加速度.zip
资源类型:本地上传资源
大小:254.78KB
评分:
5.0
上传者:DkexbxxWCzS
更新日期:2025-02-13

基于Matlab的IMU四元数姿态解算系统:融合三维向量数据与传感器融合技术,37.基于matlab的IMU姿态解算,姿态类型为四元数;角速度和线加速度的类型为三维向量 IMU全称是惯性导航系统,主

资源文件列表(大概)

文件名
大小
1.jpg
108.33KB
2.jpg
38.58KB
3.jpg
61.61KB
4.jpg
54.92KB
基于的姿态解算一引言即惯性测量单元在.html
10.66KB
基于的姿态解算四元数与三维向量的融合一引言.html
10.55KB
基于的姿态解算四元数类型姿态解析.doc
1.62KB
基于的姿态解算四元数表示法一引言即惯.txt
1.88KB
基于的姿态解算四元数表示法一引言即惯性测量单元是.txt
1.71KB
基于的姿态解算四元数表示的姿态类型一引言惯性.doc
1.65KB
基于的姿态解算四元数表示的姿态类型一系统简.txt
1.74KB
基于的姿态解算姿.html
10.67KB
基于的姿态解算研究四元数表示法一引.html
11.52KB
基于的姿态解算算法探讨一引言即惯性测量单元广泛应.txt
1.56KB

资源内容介绍

基于Matlab的IMU四元数姿态解算系统:融合三维向量数据与传感器融合技术,37.基于matlab的IMU姿态解算,姿态类型为四元数;角速度和线加速度的类型为三维向量。IMU全称是惯性导航系统,主要元件有陀螺仪、加速度计和磁力计。其中陀螺仪可以得到各个轴的加速度,而加速度计能得到x,y,z方向的加速度,而磁力计能获得周围磁场的信息。主要的工作便是将三个传感器的数据融合得到较为准确的姿态信息。程序已调通,可直接运行。,核心关键词:Matlab; IMU姿态解算; 四元数姿态; 三维向量; 陀螺仪; 加速度计; 磁力计; 数据融合。,基于Matlab的IMU四元数姿态解算程序

用户评论 (0)

发表评论

captcha

相关资源

MATLAB平台数字滤波器FFT频谱分析系统:自定义频段操作与波形数据处理的研究与实践,基于matlab的FFT频谱分析,数字滤波器 可进行谐波提取,可实现对仿真模型中示波器的波形数据或者外部采样数

MATLAB平台数字滤波器FFT频谱分析系统:自定义频段操作与波形数据处理的研究与实践,基于matlab的FFT频谱分析,数字滤波器。可进行谐波提取,可实现对仿真模型中示波器的波形数据或者外部采样数据进行频谱分析和自定义频段清除,也可以对已有数据特定频段的数据进行提取。滤波前后波形无相位滞后,幅值无衰减。图a是原始信号,含三次,五次谐波,图b是原始信号频谱分析(FFT)结果,图c是滤除三次和五次谐波信号后的对比结果,图d是滤波后波形频谱分析(FFT分析)结果。,基于Matlab的FFT频谱分析; 数字滤波器; 谐波提取; 频段清除; 波形数据采样; 相位无滞后; 幅值无衰减。,基于Matlab的数字滤波器FFT频谱分析系统

224.5KB38金币

基于模糊控制与最优理论的主动悬架PID控制器优化模型研究与应用:软件为MATLAB Simulink,包含源码与建模文档资料,基于模糊控制的主动悬架PID控制器优化模型适用场景:针对主动悬架的PID

基于模糊控制与最优理论的主动悬架PID控制器优化模型研究与应用:软件为MATLAB Simulink,包含源码与建模文档资料,基于模糊控制的主动悬架PID控制器优化模型适用场景:针对主动悬架的PID控制时性能指标Kp、Ki、Kd依靠设计经验的缺点,基于模糊控制和最优控制理论,设计了一种基于模糊控制的PID控制器(fuzzy+PID控制器)来优化系统性能指标权重系数。软件: matlab simulink包含:simulink源码文件,详细建模说明文档,对应参考资料,,基于模糊控制的PID控制器优化; 主动悬架性能指标优化; 模糊控制与最优控制理论; MATLAB Simulink源码文件; 建模说明文档; 参考资料; Kp、Ki、Kd权重系数调整,模糊控制优化的主动悬架PID控制器模型

82.75KB29金币

**基于改进动态窗口法DWA的模糊自适应权重调整路径规划算法的MATLAB实现源码与文档**,基于改进动态窗口 DWA 模糊自适应调整权重的路径规划算法 MATLAB 源码+文档《栅格地图可修改》

**基于改进动态窗口法DWA的模糊自适应权重调整路径规划算法的MATLAB实现源码与文档**,基于改进动态窗口 DWA 模糊自适应调整权重的路径规划算法 MATLAB 源码+文档《栅格地图可修改》基本DWA算法能够有效地避免碰撞并尽可能接近目标点,但评价函数的权重因子需要根据实际情况进行调整。为了提高DWA算法的性能,本文提出了一种改进DWA算法,通过模糊控制自适应调整评价因子权重,改进DWA算法的实现过程如下:定义模糊评价函数。模糊评价函数是一种能够处理不确定性和模糊性的评价函数。它将输入值映射到模糊隶属度,根据规则计算输出值。在改进DWA算法中,我们定义了一个三输入一输出的模糊评价函数,输入包括距离、航向和速度,输出为权重因子。[1]实时调整权重因子。在基本DWA算法中,权重因子需要根据实际情况进行调整,这需要人工干预。在改进DWA算法中,我们通过模糊控制实现自适应调整,以提高算法的性能。[2]评估路径。通过路径的长度和避障情况等指标评估路径的优劣,并记录最优路径。[3]更新权重因子。根据评估结果,更新权重因子,使评价函数更加符合实际情况。重新规划路径

145.15KB46金币

基于分位数回归与多头自注意力机制的QRCNN-BiLSTM双向长短期记忆神经网络回归区间预测模型(Matlab语言程序,已调试完成,无需改动,可直接替换Excel运行,创新水文预测解决方案),区间

基于分位数回归与多头自注意力机制的QRCNN-BiLSTM双向长短期记忆神经网络回归区间预测模型(Matlab语言程序,已调试完成,无需改动,可直接替换Excel运行,创新水文预测解决方案),区间预测QRCNN-BiLSTM-MultiAttention基于分位数回归双向长短期记忆神经网络结合多头自注意力机制的回归区间预测 Matlab语言程序已调试好,无需更改代码直接替Excel运行你先用,你就是创新需要水文的抓紧多变量单输出,回归预测也可成时间序列单列预测(前选一种),回归效果如图1所示~采用分位数回归QR方法实现区间预测,可自由调整置信区间,评价指标包括R2、MAE、MSE、MAPE、PICP、PIMWP采用多头自注意力机制,知网上还没人用过此模型,网络结构图如图2所示,先用先发Matlab版本要求在2023a及以上,没有的可提供安装包注:1.附赠测试数据,数据格式如图3所示~2.注释清晰,适合新手小白运行main文件一键出图~3.仅包含Matlab代码,后可保证原始程序运行4.模型只是提供一个衡量数据集精度的方法,因此无法保证替数据就一定得到您满意的结果

317.79KB37金币