so-large-lm-main.zip
资源来源:本地上传资源
文件类型:ZIP
大小:11.54MB
评分:
5.0
上传者:2301_80488214
更新日期:2024-07-24

大模型基础: 一文了解大模型基础知识

资源文件列表(大概)

文件名
大小
so-large-lm-main/
-
so-large-lm-main/.gitignore
2.24KB
so-large-lm-main/README.md
9.11KB
so-large-lm-main/docs/
-
so-large-lm-main/docs/.nojekyll
-
so-large-lm-main/docs/README.md
4.06KB
so-large-lm-main/docs/_sidebar.md
762B
so-large-lm-main/docs/content/
-
so-large-lm-main/docs/content/ch01.md
32.23KB
so-large-lm-main/docs/content/ch02.md
24.27KB
so-large-lm-main/docs/content/ch03.md
33.17KB
so-large-lm-main/docs/content/ch04.md
23.32KB
so-large-lm-main/docs/content/ch05.md
18.94KB
so-large-lm-main/docs/content/ch06.md
14.64KB
so-large-lm-main/docs/content/ch07.md
26.29KB
so-large-lm-main/docs/content/ch08.md
5.73KB
so-large-lm-main/docs/content/ch09.md
9.38KB
so-large-lm-main/docs/content/ch10.md
22.42KB
so-large-lm-main/docs/content/ch11.md
14.04KB
so-large-lm-main/docs/content/ch12.md
15.37KB
so-large-lm-main/docs/content/ch13.md
14.47KB
so-large-lm-main/docs/content/ch14.md
24.5KB
so-large-lm-main/docs/content/images/
-
so-large-lm-main/docs/content/images/act.png
453.59KB
so-large-lm-main/docs/content/images/adaptation_1.png.png
153.54KB
so-large-lm-main/docs/content/images/agent.png
343.63KB
so-large-lm-main/docs/content/images/agent_town.png
1016.83KB
so-large-lm-main/docs/content/images/ai-lifecycle.png
111.04KB
so-large-lm-main/docs/content/images/bart-transformations.png
39.01KB
so-large-lm-main/docs/content/images/base-results.png
63.13KB
so-large-lm-main/docs/content/images/bert.png
241.85KB
so-large-lm-main/docs/content/images/climate-change-effects.jpg
203.93KB
so-large-lm-main/docs/content/images/code-llama.png
44.89KB
so-large-lm-main/docs/content/images/data-1.png.png
49.68KB
so-large-lm-main/docs/content/images/disinformation.png
270.63KB
so-large-lm-main/docs/content/images/dmoe.png
72.78KB
so-large-lm-main/docs/content/images/download.png
307.02KB
so-large-lm-main/docs/content/images/electricity-emissions.png
118.79KB
so-large-lm-main/docs/content/images/emissions-country.png
28.58KB
so-large-lm-main/docs/content/images/emissions-graph.png
53.06KB
so-large-lm-main/docs/content/images/facebook-moe-results.png
31.16KB
so-large-lm-main/docs/content/images/facebook-moe-stereoset.png
97.23KB
so-large-lm-main/docs/content/images/few-shot-learner.png
369.74KB
so-large-lm-main/docs/content/images/glam-architecture.png
87.86KB
so-large-lm-main/docs/content/images/glam-results2.png
80.72KB
so-large-lm-main/docs/content/images/glam-trivia-qa.png
38.05KB
so-large-lm-main/docs/content/images/global_emissions_sector_2015.png
37.07KB
so-large-lm-main/docs/content/images/google-emissions-table.png
166.61KB
so-large-lm-main/docs/content/images/gopher-result.png
62.13KB
so-large-lm-main/docs/content/images/gopher.png.canvas
2B
so-large-lm-main/docs/content/images/gpt-3-dataset.png.png
15.42KB
so-large-lm-main/docs/content/images/gpt3_arithmetic.png.png
139.83KB
so-large-lm-main/docs/content/images/gpt3_triviaQA.png.png
88.34KB
so-large-lm-main/docs/content/images/jacobs-moe.png
32.45KB
so-large-lm-main/docs/content/images/lightweight.png.png
98.51KB
so-large-lm-main/docs/content/images/llama-1-arch.png
90.74KB
so-large-lm-main/docs/content/images/llama-1-data.png
89.69KB
so-large-lm-main/docs/content/images/llama-1.jpg
1.02MB
so-large-lm-main/docs/content/images/llama-2-arch.png
164.43KB
so-large-lm-main/docs/content/images/llama-2-train.png
227.97KB
so-large-lm-main/docs/content/images/llama-2.png
62KB
so-large-lm-main/docs/content/images/llama-2vs1.png
171.85KB
so-large-lm-main/docs/content/images/llama-3-400-1.png
747.1KB
so-large-lm-main/docs/content/images/llama-3-400-2.png
78.64KB
so-large-lm-main/docs/content/images/llama-3-arch.png
30.91KB
so-large-lm-main/docs/content/images/llama-3-instruct.png
581.05KB
so-large-lm-main/docs/content/images/llama-3-pretrain.png
515.31KB
so-large-lm-main/docs/content/images/llama-3.png
320.7KB
so-large-lm-main/docs/content/images/llama-3vs2.png
225.52KB
so-large-lm-main/docs/content/images/llm+p.png
269.83KB
so-large-lm-main/docs/content/images/mixed-precision-training.png
326.49KB
so-large-lm-main/docs/content/images/moe-figure.png
99.48KB
so-large-lm-main/docs/content/images/parallelism-1.png
20.6KB
so-large-lm-main/docs/content/images/parallelism-2.png
49.75KB
so-large-lm-main/docs/content/images/parallelism-3.png
59.14KB
so-large-lm-main/docs/content/images/parallelism-4.png
38.46KB
so-large-lm-main/docs/content/images/parallelism-5.png
195.07KB
so-large-lm-main/docs/content/images/pile-dataset.png.png
160.78KB
so-large-lm-main/docs/content/images/prefix_ood.png.png
30.9KB
so-large-lm-main/docs/content/images/probing.png.png
151.35KB
so-large-lm-main/docs/content/images/prompt_result.png.png
67.97KB
so-large-lm-main/docs/content/images/promt_ood.png.png
42.26KB
so-large-lm-main/docs/content/images/rag-architecture.png
82.63KB
so-large-lm-main/docs/content/images/rag-example.png
43.82KB
so-large-lm-main/docs/content/images/rag-results.png
122.61KB
so-large-lm-main/docs/content/images/reflection.png
170.49KB
so-large-lm-main/docs/content/images/retro-lm-results.png
45.5KB
so-large-lm-main/docs/content/images/t5-supervised.png
59.15KB
so-large-lm-main/docs/content/images/t5-unsupervised-table.png
91.14KB
so-large-lm-main/docs/content/images/temperature-graph.jpg
52.12KB
so-large-lm-main/docs/content/images/tool.png
441.49KB
so-large-lm-main/docs/content/images/tool_study.jpg
92.32KB
so-large-lm-main/docs/content/images/tot.png
254.45KB
so-large-lm-main/docs/content/images/volunteer-dall-e.png
38.47KB
so-large-lm-main/docs/content/工具篇.md
4.63KB
so-large-lm-main/docs/content/探索篇.md
6.87KB
so-large-lm-main/docs/index.html
2.47KB
so-large-lm-main/专业词汇表
64B

资源内容介绍

人工智能、自然语言处理和机器学习领域的研究者和从业者:该项目旨在为研究者和从业者提供大规模预训练语言模型的知识和技术,帮助他们更深入地了解当前领域的最新动态和研究进展。学术界和产业界对大型语言模型感兴趣的人士:项目内容涵盖了大型语言模型的各个方面,从数据准备、模型构建到训练和评估,以及安全、隐私和环境影响等方面。这有助于拓宽受众在这一领域的知识面,并加深对大型语言模型的理解。想要参与大规模语言模型开源项目的人士:本项目提供代码贡献和理论知识,降低受众在大规模预训练学习的门槛。其余大型语言模型相关行业人员:项目内容还涉及大型语言模型的法律和道德考虑,如版权法、合理使用、公平性等方面的分享,这有助于相关行业从业者更好地了解大型语言模型的相关问题。

用户评论 (0)

发表评论

captcha

相关资源

SagooIOT是一个基于golang开发的开源的企业级物联网基础开发平台 负责设备管理和协议数据管理,支持跨平台的物联网接入

About SagooIOT是一个轻量级的轻量级平台开发的。它支持跨平台访问和管理解决方案。该平台实现与信息通信技术开发有关的基本功能,在此基础上,可以快速建立一套完整的信息通信技术相关业务系统。平台概览基于GG框架2.0+VO3+元素加元素开发的前端和后端分离管理系统前端使用的是----行政、VUE和元素UI。特点高生产率:可以在几分钟内建立后端管理系统模块化:一个具有多个系统的应用程序,它将一个完整的应用程序划分为多个系统,以便于扩展和增加代码重用。认证机制:采用GLOT用户身份认证和CASBIN授权路由模式:由于Go框架2.0提供了一种标准化的路由注册方法,自动生成的API文档没有注释。面向互动的发展支持对象模型,多产品,和多设备访问和管理。模糊了网络协议的复杂性,适应了多个访问协议(tml、mqtt、UDP、COAP、http、G组PC、RPC等)。),以及弹性连接不同制造商的设备。

20.32MB10金币

清华大学第六届人工智能挑战赛电子系赛道(原电子系第 24 届队式程序设计大赛 )

比赛名称:深度"学习"—— 毕业吧,少女!赛事背景: 现有的数据集再也无法满足搭载了THUAI的智能机器人“捣蛋鬼”自我迭代的欲望,它认为自己已经有足够能力去学习人类的思想,然后在课程中战胜其他清华同学,为此,它想出了完美的方案。在某节写作课的教室,它假扮为了一名上课的同学,偷偷在课堂中学习其他同学的想法,同时干扰其他同学,诱惑他们摸鱼。学生在这种环境下,相互帮助,努力学习,挣得学分,尽力避免自己被捣蛋鬼影响,只不过,有一名不擅长写作但很擅长AI的同学,似乎和其他人不是同样的想法……比赛规则选手分为学生和捣蛋鬼两个阵营,学生阵营需要在不同的“教室”中发挥合作精神、努力学习、获得高学分。捣蛋鬼阵营需要改善捣蛋鬼的AI,想方设法干扰同学们,诱惑同学们沉迷摸鱼。学习过程中,学生需要及时帮助其他同学,防止他们被退学。当学分足够高时,同学们就可以来到“校门”前毕业。此外,各种“校园怪谈宝箱”中能找到不错的道具,甚至还有六教的钥匙!充分利用道具,发挥各自特长,亦是胜利的秘诀。每场比赛分为上下两场,双方队伍将分别扮演学生和捣蛋鬼,最终两场加起来得分更高的队伍获胜。

31.06MB10金币

20240725100124809307-864538.zip

20240725100124809307-864538.zip

123.98KB38金币

20240726100125039578_54771.zip

20240726100125039578_54771.zip

123.68KB16金币