下载资源后端资源详情
Mask_RCNN-master.zip
资源类型:本地上传资源
文件类型:ZIP
大小:73.68MB
评分:
5.0
上传者:qq_61523551
更新日期:2024-08-01

Mask-RCNN-master.zip,Mask-RCNN安装文件

资源文件列表(大概)

文件名
大小
Mask_RCNN-master/
-
Mask_RCNN-master/.gitignore
569B
Mask_RCNN-master/LICENSE
1.07KB
Mask_RCNN-master/MANIFEST.in
58B
Mask_RCNN-master/README.md
13.44KB
Mask_RCNN-master/assets/
-
Mask_RCNN-master/assets/4k_video.gif
11.61MB
Mask_RCNN-master/assets/balloon_color_splash.gif
9.21MB
Mask_RCNN-master/assets/detection_activations.png
69.11KB
Mask_RCNN-master/assets/detection_anchors.png
746.79KB
Mask_RCNN-master/assets/detection_final.png
887.11KB
Mask_RCNN-master/assets/detection_histograms.png
13.43KB
Mask_RCNN-master/assets/detection_masks.png
9.75KB
Mask_RCNN-master/assets/detection_refinement.png
702.75KB
Mask_RCNN-master/assets/detection_tensorboard.png
43.08KB
Mask_RCNN-master/assets/images_to_osm.png
983.02KB
Mask_RCNN-master/assets/mapping_challenge.png
613.2KB
Mask_RCNN-master/assets/nucleus_segmentation.png
708.45KB
Mask_RCNN-master/assets/project_3dbuildings.png
959.02KB
Mask_RCNN-master/assets/project_grass_gis.png
578.81KB
Mask_RCNN-master/assets/project_ice_wedge_polygons.png
1MB
Mask_RCNN-master/assets/project_shiny1.jpg
216.48KB
Mask_RCNN-master/assets/project_usiigaci1.gif
2.54MB
Mask_RCNN-master/assets/project_usiigaci2.gif
609.42KB
Mask_RCNN-master/assets/street.png
890.48KB
Mask_RCNN-master/images/
-
Mask_RCNN-master/images/1045023827_4ec3e8ba5c_z.jpg
137.64KB
Mask_RCNN-master/images/12283150_12d37e6389_z.jpg
66.75KB
Mask_RCNN-master/images/2383514521_1fc8d7b0de_z.jpg
203.23KB
Mask_RCNN-master/images/2502287818_41e4b0c4fb_z.jpg
130.58KB
Mask_RCNN-master/images/2516944023_d00345997d_z.jpg
176.98KB
Mask_RCNN-master/images/25691390_f9944f61b5_z.jpg
176.2KB
Mask_RCNN-master/images/262985539_1709e54576_z.jpg
121.88KB
Mask_RCNN-master/images/3132016470_c27baa00e8_z.jpg
169.62KB
Mask_RCNN-master/images/3627527276_6fe8cd9bfe_z.jpg
157.16KB
Mask_RCNN-master/images/3651581213_f81963d1dd_z.jpg
147.02KB
Mask_RCNN-master/images/3800883468_12af3c0b50_z.jpg
119.68KB
Mask_RCNN-master/images/3862500489_6fd195d183_z.jpg
94.01KB
Mask_RCNN-master/images/3878153025_8fde829928_z.jpg
85.81KB
Mask_RCNN-master/images/4410436637_7b0ca36ee7_z.jpg
123.79KB
Mask_RCNN-master/images/4782628554_668bc31826_z.jpg
223.71KB
Mask_RCNN-master/images/5951960966_d4e1cda5d0_z.jpg
157.21KB
Mask_RCNN-master/images/6584515005_fce9cec486_z.jpg
142.24KB
Mask_RCNN-master/images/6821351586_59aa0dc110_z.jpg
212.46KB
Mask_RCNN-master/images/7581246086_cf7bbb7255_z.jpg
142.37KB
Mask_RCNN-master/images/7933423348_c30bd9bd4e_z.jpg
208.56KB
Mask_RCNN-master/images/8053677163_d4c8f416be_z.jpg
219.62KB
Mask_RCNN-master/images/8239308689_efa6c11b08_z.jpg
221.09KB
Mask_RCNN-master/images/8433365521_9252889f9a_z.jpg
177.85KB
Mask_RCNN-master/images/8512296263_5fc5458e20_z.jpg
145.92KB
Mask_RCNN-master/images/8699757338_c3941051b6_z.jpg
234.31KB
Mask_RCNN-master/images/8734543718_37f6b8bd45_z.jpg
162.83KB
Mask_RCNN-master/images/8829708882_48f263491e_z.jpg
237.28KB
Mask_RCNN-master/images/9118579087_f9ffa19e63_z.jpg
300.74KB
Mask_RCNN-master/images/9247489789_132c0d534a_z.jpg
282.17KB
Mask_RCNN-master/mrcnn/
-
Mask_RCNN-master/mrcnn/__init__.py
1B
Mask_RCNN-master/mrcnn/config.py
9.44KB
Mask_RCNN-master/mrcnn/model.py
123.84KB
Mask_RCNN-master/mrcnn/parallel_model.py
6.92KB
Mask_RCNN-master/mrcnn/utils.py
33.47KB
Mask_RCNN-master/mrcnn/visualize.py
18.51KB
Mask_RCNN-master/requirements.txt
106B
Mask_RCNN-master/samples/
-
Mask_RCNN-master/samples/balloon/
-
Mask_RCNN-master/samples/balloon/README.md
1.94KB
Mask_RCNN-master/samples/balloon/balloon.py
13.71KB
Mask_RCNN-master/samples/balloon/inspect_balloon_data.ipynb
7.8MB
Mask_RCNN-master/samples/balloon/inspect_balloon_model.ipynb
9.99MB
Mask_RCNN-master/samples/coco/
-
Mask_RCNN-master/samples/coco/coco.py
21.04KB
Mask_RCNN-master/samples/coco/inspect_data.ipynb
7.84MB
Mask_RCNN-master/samples/coco/inspect_model.ipynb
9.84MB
Mask_RCNN-master/samples/coco/inspect_weights.ipynb
1.21MB
Mask_RCNN-master/samples/demo.ipynb
1.48MB
Mask_RCNN-master/samples/nucleus/
-
Mask_RCNN-master/samples/nucleus/README.md
1.25KB
Mask_RCNN-master/samples/nucleus/inspect_nucleus_data.ipynb
4.21MB
Mask_RCNN-master/samples/nucleus/inspect_nucleus_model.ipynb
6.59MB
Mask_RCNN-master/samples/nucleus/nucleus.py
18.05KB
Mask_RCNN-master/samples/shapes/
-
Mask_RCNN-master/samples/shapes/shapes.py
7.41KB
Mask_RCNN-master/samples/shapes/train_shapes.ipynb
99.23KB
Mask_RCNN-master/setup.cfg
99B
Mask_RCNN-master/setup.py
2.46KB

资源内容介绍

安装可以查看,含一些报错解决方案,https://mp.csdn.net/mp_blog/creation/editor/140853795Mask R-CNN(Mask Region-Based Convolutional Neural Network)是一种用于实例分割(Instance Segmentation)的深度学习模型。它是在 Faster R-CNN 的基础上扩展而来,可以同时进行对象检测(Object Detection)、目标实例分割以及对象的语义分割。让我用更简单的术语解释一下 Mask R-CNN 的工作原理:1. **对象检测(Object Detection)**:Mask R-CNN 可以识别图像中的不同物体,并确定它们的位置。这类似于在图像中画边界框来标记物体的位置,即确定物体在图像中的位置和大小。2. **实例分割(Instance Segmentation)**:与对象检测不同,实例分割不仅可以检测物体的位置,还可以为每个检测到的物体生成一个像素级的掩模(mask),将其与图像中其他物体进行区分,从而精确地确定物体边界。3. *

用户评论 (0)

发表评论

captcha