一维数据分类:基于多特征交互与相对位置编码的滚动轴承故障检测技术研究与应用实践,以凯斯西储大学数据集为例,结合心电信号多分类与飞机信号hrrp的深度分析,采用一维Swin Transformer模型优
资源文件列表(大概)
资源内容介绍
一维数据分类:基于多特征交互与相对位置编码的滚动轴承故障检测技术研究与应用实践,以凯斯西储大学数据集为例,结合心电信号多分类与飞机信号hrrp的深度分析,采用一维Swin Transformer模型优化及多尺度卷积特征编码技术,实现模型性能提升与可视化结果呈现。,基于一维数据分类的算法研究:从滚动轴承故障检测到多尺度特征提取与可视化分析,一维数据分类 滚动轴承故障检测cwru 凯斯西储大学数据hrrp飞机信号心电信号多分类[1]【1维 swin transformer】基于滑动窗口的不同位置信息的特征交互来提高不同模型性能[2]【相对位置编码】保持原2Dswin transformer注意力图添加相对位置偏置bias,减少模型参数量的同时提高性能。[3]【多尺度一维卷积特征编码】通过多尺度的卷积局部注意力操作,可以在模型前端保存特征的位置优势,并提取低级特征保持局部结构信息。 可出混淆矩阵和tsne可视化,一维数据分类; 滚动轴承故障检测; cwru凯斯西储大学数据; hrrp飞机信号; 心电信号多分类; 1维Swin Transformer; 相对位置编码; 多尺度用户评论 (0)
发表评论
相关资源
基于遗传算法的电动汽车有序充电优化调度研究:比较传统与精英变异算法的迭代效果,考虑充电费用与电网负荷影响,附Matlab详细代码与文献参考 ,基于遗传算法的电动汽车有序充电调度优化研究:考虑充电费用、
基于遗传算法的电动汽车有序充电优化调度研究:比较传统与精英变异算法的迭代效果,考虑充电费用与电网负荷影响,附Matlab详细代码与文献参考。,基于遗传算法的电动汽车有序充电调度优化研究:考虑充电费用、充电时间及电网负荷影响的比较(Matlab实现),基于遗传算法的电动汽车有序充电优化调度软件:Matlab利用遗传算法对电动汽车有序充电进行优化;优化目标包括充电费用最低,充电时间达到要求(电动汽车充到足够的电)考虑电动汽车充电对电网负荷的影响,使负荷峰谷差最小。分别利用传统、精英和变异遗传算法进行对比算法优劣,比较迭代结果,优化变量为起始充电时刻电动汽车一天24小时无序充电功率的蒙特卡洛模拟曲线可以修改电动汽车数量有原文献Matlab代码注释详细,基于遗传算法的电动汽车充电优化; 遗传算法类型对比; 充电费用最低化; 充电时间满足要求; 电网负荷影响优化; 蒙特卡洛模拟曲线; 电动汽车数量可调; Matlab代码详解。,基于遗传算法的电动汽车有序充电调度优化:费用最低、负荷均衡的对比研究
闭环步进驱动器源码全集成,带PCB与BOM等文件-现成生产力解决方案,闭环步进驱动器源码版,量产成品供应,配套PCB文件及BOM清单,工程文件齐全,上位机软件整合,闭环步进驱动器源码,已经量产,拿到
闭环步进驱动器源码全集成,带PCB与BOM等文件——现成生产力解决方案,闭环步进驱动器源码版,量产成品供应,配套PCB文件及BOM清单,工程文件齐全,上位机软件整合,闭环步进驱动器源码,已经量产,拿到就能直接生产,带PCB文件,BOM,工程文件,上位机软件等,核心关键词:闭环步进驱动器;源码;量产;PCB文件;BOM;工程文件;上位机软件;直接生产。,直接生产型闭环步进驱动器源码套装,含PCB、BOM及工程文件上位机软件
基于麻雀搜索算法优化的无线传感器网络Dv-hop定位算法:误差最小化与算法对比分析,基于麻雀搜索算法优化无线传感器网络Dv-hop定位算法的研究与实践,matlab代码:基于麻雀搜索算法的无线传感器网
基于麻雀搜索算法优化的无线传感器网络Dv-hop定位算法:误差最小化与算法对比分析,基于麻雀搜索算法优化无线传感器网络Dv-hop定位算法的研究与实践,matlab代码:基于麻雀搜索算法的无线传感器网络Dv-hop定位算法- 利用麻雀搜索算法寻找未知节点到锚节点的实际距离和估计距离之间的最小误差,完成对未知节点坐标的估计- 进行了原始Dv-hop定位算法和基于SSA的Dv-hop定位算法的对比- 注释很详细,麻雀搜索算法; Dv-hop定位算法; 无线传感器网络; 距离误差; 节点坐标估计; 对比实验; 详细注释。,基于SSA优化的Dv-hop定位算法:无线传感器网络节点坐标估计
基于改进遗传算法的含DG中压配电网时序无功优化程序,调控主变抽头、并联电容器与光伏逆变器无功出力,基于改进遗传算法的含DG中压配电网时序无功优化程序,调控主变抽头、并联电容器与光伏逆变器无功出力,含D
基于改进遗传算法的含DG中压配电网时序无功优化程序,调控主变抽头、并联电容器与光伏逆变器无功出力,基于改进遗传算法的含DG中压配电网时序无功优化程序,调控主变抽头、并联电容器与光伏逆变器无功出力,含DG的配电网时序无功优化程序%程序名称: 基于IGA的中压配电网电压调控优化主程序%程序方法:1、改进遗传算法%程序对象:含DG下中压配电网电压调控%优化对象:1.主变抽头档位% 2.并联电容器组数% 3.光伏可调无功出力%决策变量:主变抽头档位--并联电容器组数)---光伏逆变器无功出力,关键词:DG配电网;时序无功优化;IGA算法;主变抽头档位;并联电容器组数;光伏可调无功出力;电压调控优化。,含DG配电网时序无功优化主程序:基于改进遗传算法的中压电压调控程序